

من واقع امتحانات الوزارة

أولي ثانوي
ترم ثان

الأستاذ

محمد الجبل

01007775448

مراجعة عامر لها ١٠٠٠

٧٠

$$\text{إذا كان } \begin{vmatrix} ٤ & ٥ \\ ٢ & ٣ \end{vmatrix} = ٧ \text{ فإن } \begin{vmatrix} ٣ & ٤ \\ ٥ & ٢ \end{vmatrix} = \dots$$

١٠ ٥

٣٥ ٥

١٤ ١

٢٤ ٥

١٢ ٥

١٥ ٥

١٠ ١

٥ ٥

$$\text{إذا كانت } \begin{pmatrix} ٢ & ٣ \\ ٠ & ٥ \end{pmatrix} = \square \text{ فإن } \begin{pmatrix} ٠ & ٣ \\ ٢ & ٥ \end{pmatrix} = \dots$$

$$\begin{pmatrix} ٥ & ٣ \\ ٠ & ٢ \end{pmatrix} \odot \quad \begin{pmatrix} ٠ & ٣ \\ ٢ & ٥ \end{pmatrix} \bullet \quad \begin{pmatrix} ٢ & ٣ \\ ٠ & ٥ \end{pmatrix} \odot \quad \begin{pmatrix} ٢ & ٣ \\ ٠ & ٥ \end{pmatrix} \odot$$

٥ طا^٢ θ

٥ ما θ

١ ٥

١٠ ١

{°٢١٠} ٥

{°٢٤٠} ٥

{°٢٢٥} ٥

{°٣٣٠} ١

٥٧٠ ٩٠

$\frac{\pi}{٤} \cdot \frac{\pi}{٤}$

مجموعة حل المعادلة $\frac{\pi}{٤} \cdot \frac{\pi}{٤} = ٢ + \theta \Rightarrow \theta = ٢ + \theta$ حيث $\theta \in \mathbb{R}$ [هي =

١٧٧ ٥

٧٧ ٥

٧,٥ ٥

$\pi \cdot ٧,٥$ ١

في الشكل المقابل :

أب قطر هي الدائرة

هان مساحة الدائرة =

مساحة قطعة دائيرية ارتفاعها ٨ وطول نصف قطر دائرتها ٦ تساوى م٢

١٨٦ ٥

٩٣ ٥

٣٩ ٥

٧٨ ١

٩ ٥

١٠ ٥

٢ ٥

٨ ٥

إذا كان ق = $\theta = ٣$ فإن طا^٢ θ =

في الرياضيات

إذا كانت A مصفوفة شبه متماثلة على النظم 3×3 فإن $A = \frac{1}{3}A + \frac{1}{3}A + \frac{1}{3}A$

٣ ⑤

٤ ⑥

٥ ⑦

٦ ٠ صفر

٩

إذا كان $A = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix}$ فإن $A^2 =$

١٢ ⑤

١٤ ⑥

٧ ⑦

٨ ١

١٠

١٢- ⑤

١٢ ⑥

٩ ١٢ طانا

٣ ٤ ١

١١

$$\dots = \begin{vmatrix} 0 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 4 & 1 \end{vmatrix}$$

إذا كان $A = \begin{pmatrix} 1+s & 2 \\ 2 & s+c \end{pmatrix}$ فإن $s + c =$

٤ ⑤

٢ ⑥

٣ ٦

٤ ١

١٢

إذا كانت النقطة $(2, 3)$ تنتمي لمجموعة حل المتباينة $s + c \geq k$ فإن
 ٥ ٦ $k > 5$ ٧ $k \leq 5$ ٨ $k < 5$

١٣

إذا كانت المصفوفة A على النظم 2×3 والمصفوفة B على النظم 1×3

فإن المصفوفة B على النظم
 ٩ ١٠ ١١ ١٢ ١٣

١٤

٣ ٢ ٥

٣ ١ ٦

١ ٢ ٧

٢ ١ ٨

01007775448

م. محمد الجمل

قياس الزاوية الحادة المحسورة بين المستقييم المار بال نقطتين (١٦٠، ١٦١)

٢٢

والاتجاه الموجب لحور السينات تساوى

٩٠ ⑤

٩٠ ⑥

٤٥ ⑦

٠ صفر ⑧

١٥ ⑨

١٦ ⑩

١٧ ⑪

١٨ ⑫

إذا كان $\angle A + \angle B = \angle C - \angle D$ فإن $\angle A = \angle B$

١٦ ⑬

٤٤ ⑭

٤٥ ⑮

٤٦ ⑯

إذا كان $\angle A = \angle B$ فيه $\angle A = \angle C$ ، $\angle B = \angle D$ فإن $\angle C = \angle D$

فإن $\angle A = \angle B$

١٧ ⑰ منفرج الزاوية

١٨ ⑱ قائم الزاوية

١٩ ⑲ متساوي الأضلاع

٢٠ ⑳ حاد الزاوية

المستقيمين :

٢١ ⑳ متوازيان

٢٢ ⑳ منطبقان

٢٣ ⑳ متلقاطعان

٢٤ ⑳ متوازيان

٢٦

إذا كانت $\overline{AB} = \overline{CD}$ فإن

٢٥ ⑳ $\angle A = \angle C$ فقط

٢٦ ⑳ $\angle A = \angle C$ ، $\angle B = \angle D$ ولها نفس الاتجاه

٢٧

إذا كان $L : \angle A = \angle B = \angle C = \angle D$ ، $L : \angle E = \angle F = \angle G = \angle H$

وقياس الزاوية بين المستقيمين تساوى صفر فإن $\angle A = \angle E$

٢٧ ⑳ صفر

٢٨ ⑳

٢٩ ⑳

٣٠ ⑳

٢٨

الإجابات

إذا كانت $A = \begin{pmatrix} 4 & 2 \\ 3 & 4 \end{pmatrix}$ فإن $A^{-1} = \dots$

١

٢٢

٣

٢٢

٤

٢٧

٤

١٨

٩

٦

١

إذا كانت $A = \begin{pmatrix} 7 & 1 \\ 1 & 1 \end{pmatrix}$ فإن $A^{-1} = \dots$

١

٤

٢

١

٢

الخطقة التي تمثل مجموعة حل المتباينتين: $0 \leq x \leq 4$ هي الرابع
 ٥ الأول ٦ الثاني ٧ الثالث ٨ الرابع

٣

قطعان دائري مساحة سطحه 72π وطول نصف قطر دائريته يساوى طول

قوسه فإن محیطه = m

١٥

٢٤

١٢

٣٦

٤

إذا كانت $3 \sin^2 \theta = 1$ حيث $\theta \in [0, 2\pi]$ فإن $\theta = \dots$
 ٦ $\{0^\circ, 180^\circ\}$ ٧ $\{90^\circ\}$ ٨ $\{0^\circ, 90^\circ\}$

٤٩

$\sin^2 \theta = 1 - \left(\frac{\pi}{4} - \theta \right) + \sin^2 \left(\theta - \frac{\pi}{4} \right)$
 ٦ $\frac{\pi}{4}$ ٧ $\frac{\pi}{2}$ ٨ صفر

٥

$\sin^2 \theta - \sin^2 \left(\frac{\pi}{4} - \theta \right) = \dots$
 ٦ $\frac{\pi}{4}$ ٧ $\frac{\pi}{2}$ ٨ π

٤٧

الحل العام للمعادلة $\sin \theta = 1$ هي
 ٦ $2\pi k + \frac{\pi}{2}$ ٧ $2\pi k + \pi$ ٨ $2\pi k$

٤٨

٤٩

إذا كان $\vec{a} = k\vec{a}$ فإن $k = \pm 1$

٤ ⑤

٢ ⑥

٢ ± ①

أى المستقيمات الآتية يكون موازياً لمحور السينات
 $2s + 3c = 0$ ١
 $2s + 3c = 12$ ٦
 $s + 3c = 0$ ٢
 $s - 5c = 0$ ٥

٥٠

إذا كان المستقيم $s - 4c + 5 = 0$ يصنع مع الاتجاه الموجب لمحور السينات زاوية خللاها 75° ، فإن قيمة c هي
 $s - 4c + 5 = 0$ ٣
 $s - 4c + 5 = 0$ ٤
 $s - 4c + 5 = 0$ ٣ - ①

٥١

إذا كان $m = (1, 2)$ هي نقطة تقاطع متواسطات ΔABC وكان
 $(5, -4, 0) = (2, 3 - s, 0)$ فإن إحداثيات m هي
 $(1, 4) ④$ ١
 $(4, 1) ⑤$ ٢
 $(4, 1) ⑥$ ٣
 $(1, 4) ①$ ٤

٥٢

AB مربع فيه $(1, 4)$ ، معادلة BC هي $2s + 3c = 1$
 $2s + 3c = 5$ ٣
 $2s + 3c = 0$ ٤
 $2s + 3c = 14$ ٥
 $s - 2c = 0$ ٥

٥٣

البعد العمودي بين المستقيمين $c - 3s + 2 = 0$ ، $s + 2c = 0$ يساوى وحدة طول
 $5 ①$ ١
 $3 ⑤$ ٢
 $2 ⑥$ ٣
 $1 ①$ ٤

٥٤

المعادلة المتجهة للمستقيم الذي يمر ب نقطة الأصل وينقاطع تقاطع المستقيمين
 $s = 3c$ ، $c = k$ هي
 $s = k(4, 3)$ ٣
 $s = k(4, 3) + (0, 0)$ ٤
 $s = k(4, 3) + (0, 0)$ ٥
 $s = k(4, 3) + (0, 0)$ ٦

٥٥

الرياضيات

إذا كان $2x + 3y = 10$ فإن $x =$

.....

١) ٥ ٢) ٦ ٣) ٧ ٤) ٨ ٥) ٩

٥٦

إذا كان $3x + 2y = 14$ بحيث $2x =$

فإن $3x + 4y =$

.....

١) ٦ ٢) ٧ ٣) ٨ ٤) ٩ ٥) ١٠

٥٧

قياس الزاوية الحادة المحصورة بين المستقيم $s - 2x + 3s = 0$

والمستقيم المار بال نقطتين $(1, 4), (4, 1)$ تساوى

.....

١) $71^\circ 24'$ ٢) $17^\circ 22'$ ٣) $3^\circ 22'$

٥٨

في الشكل المقابل :

إذا تحرك جسم من النقطة A شرقاً

إلى النقطة B ثم عاد غرباً إلى النقطة A

فإن الإزاحة =

.....

١) ٨ في إتجاه الشرق ٢) ٣ في إتجاه الغرب

٣) ٣ في إتجاه الغرب ٤) ٨ في إتجاه الشرق

٥٩

إذا كان $x = (4 - 6)(2 + 7) = 1 - 2 = 1$ فإن $x =$

.....

١) ١ ٢) ٥ ٣) ٥ ٤) ٦

٦٠

إذا كان $x = 3s + 2s$ ، $s = 2 - 3s$ فإن

.....

١) ٦ ٢) ٦ ٣) ٦ ٤) ٦

٦١

إذا كانت $\vec{u} = 75\vec{i} + 50\vec{j}$ فإن $\vec{u} = \dots$

١٢٥ ١

١٢٥ - ٢

٢٥ ٣

٧٥ - ٤

٦٧

معادلة المستقيم المار بنقطة تقاطع المستقيمين $s = 1, s + t = 3$

٥ $s + t = 1$

٦ $s = 2$

٧ $s = 0$

٨ $s = 1$

٦٨

إذا كان طول العمود المرسوم من النقطة (٣، ١) إلى المستقيم

$|s + 3| = 6$ يساوى ٣ وحدة طول فإن قيمة $t = \dots$

٩ ٥

١٠ ٦

١١ ٤

١٢ ١

٦٩

إذا كان $\vec{a} = (2, 4, 12)$ ، $\vec{b} = (8, 12, 1)$ فإن $\vec{a} \parallel \vec{b}$

١٣ ٥

١٤ ٦

١٥ ٧

٧٠

إذا كان \vec{a} يعبر عن سرعة منتظم مقدارها ٦٠ كم / س فى اتجاه الغرب

فإن $\vec{a} = \dots$

١٦ ٥

١٧ ٦

١٨ ٧

١٩ ٨

٧١

إذا كانت $\vec{v} = (2, 5, 7)$ ، $\vec{v} = \vec{a} - \vec{b}$ ، $\vec{v} = (-5, 2, 0)$

تؤثر في نقطة مادية فإن $(1, 0) = \dots$ حيث مجموعة القوى متزنة

٢٠ ٥

٢١ ٦

٢٢ ٧

٢٣ ٨

٧٢

إذا كان \vec{a} تقسم \vec{b} بنسبة ٧:٥ من الخارج فإن $\frac{\vec{a}}{\vec{b}} = \dots$

٢٤ ٥

٢٥ ٦

٢٦ ٧

٢٧ ٨

٧٣

مجموعة حل المعادلة $2 \theta + 3 = 0$ هنا $\theta = 0$ حيث $\theta = 0$ هي $\pi/2$ [هي]

١٢٠ ٥

٢٧٠ ٦

٢٧٠، ٩٠ ٧

٩٠ ٨

٧٤

دائرة مساحتها 56 cm^2 فإن قياس زاوية القطاع الذي مساحته 16 cm^2 تساوى

١٢٠ ٩

٦٠ ٥

٤٠ ٦

٤٥ ١

٧٥

قياس الزاوية بين المستقيمين $\theta = 50^\circ$ ، $\theta = 70^\circ$ ، $\theta = 30^\circ$ هي

٩٠ ٩

٦٠ ٥

٣٠ ٦

٠ صفر ٧

٧٦

إذا كان $\theta = 21^\circ$ ، $\theta = 23^\circ$ فإن $\theta =$

٥٢ ٩

٢٠ ٥

٤٠ ٦

٤ ٧

٧٧

إذا كان $\theta = 3m + 5^\circ$ وحدة طول فإن أحدى قيم θ =

٦ ٩

٢ ٦

٣٠ ٦

٠ صفر ٧

٧٩

السرعة المتنقلة لسيارة تقطع مسافة 60 km / س فى اتجاه الغرب بدلالة

متوجه الوحدة الاساسية هي

٦٠ - ٦٠ ٩

٦٠ - ٦٠ ٥

٦٠ - ٦٠ ٦

٦٠ - ٦٠ ٧

٨٠

إذا كانت $A = 143^\circ$ ، $B = 52^\circ$ فإن النسبة التي ينقسم بها A بمحور الصدات

٦:٢ من الخارج ٩

٣:٢ من الخارج ٩

٦:٢ من الداخل ٩

٣:٢ من الداخل ٩

٨١

إذا كان $A = 41^\circ$ ، $B = 131^\circ$ فإن $A + B =$

١٠١ - ١٠١ ٩

١٠١ - ١٠١ ٦

٧٠ - ٧٠ ٦

١٠٠ ٦

٨٢

إذا كانت A مصفوفة بحيث $A \times B = 0$ فإن $B = 0$

$$\left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right) \odot \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right) = 0$$

٩٠

إذا كانت A مصفوفة بحيث $A \times B = 0$ فإن $A = 0$

$$\left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right) \odot \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right) = 0$$

٩١

إذا كان A مصفوفة مرتبة على النظم 2×2 و $|A| \neq 0$ فإن A مصفوفة أخرى

$$A^{-1} = \frac{1}{|A|} \text{det}(A)$$

٩٢

قطاع دائري قياس زاويته 144° وطول قوسه 24π فان مساحته = ...

$$\frac{1}{2} \pi r^2 \theta$$

٩٣

$(\theta - \pi) \sin \theta = \sin(\theta - \pi)$

٩٤

أ ب ح معين طول ضلعه 120 و $\angle A = 120^\circ$ فان مساحته = ...

$$\frac{1}{2} r^2 \sin \theta$$

٩٥

مجموعة حل المعادلة $2 \sin^2 \theta - \sin \theta - 2 = 0$ حيث $\theta \in [0, \pi]$ هي ...

$$\sin \theta = 1, \sin \theta = -\frac{1}{2}$$

٩٦

أ ب ح مثلث متساوي الساقين فيه $A = 15^\circ$, $B = 15^\circ$, $C = 120^\circ$

$$\sin 120^\circ = \sin 2A$$

٩٧

٩٨

٥ - س

٤ - هـ

٧ صفر

٢ ١

إذا كانت $\square = \left(\begin{array}{cc} ٣ \\ ٤ \end{array} \right) - \left(\begin{array}{cc} ٣ \\ ٤ \end{array} \right)$ فإن ص = فـ $\square = \left(\begin{array}{cc} ٣ \\ ٤ \end{array} \right) - \left(\begin{array}{cc} ٣ \\ ٤ \end{array} \right)$

٩٩

I - ت ٥

I ت ٦

I ٧

I - ١

إذا كانت $A = \left(\begin{array}{cc} ٣ \\ ٦ \end{array} \right)$ فإن $A^4 =$ فـ $A^4 = \left(\begin{array}{cc} ٣ \\ ٦ \end{array} \right)$

(٤) ٥

(٤ -) ٦

إذا كانت $A = \left(\begin{array}{cc} ٣ \\ ٦ \end{array} \right)$ فإن $(A^2)^2 =$ فـ $(A^2)^2 = \left(\begin{array}{cc} ٣ \\ ٦ \end{array} \right)$

١٠٠

الحل العام للمعادلة طـا $\theta = ٣٠ - ٣٠n$ هو

$\pi/2 + \frac{\pi}{6} ٥$ $\pi/2 + \frac{\pi}{3} ٦$ $\pi/2 + \frac{\pi}{6} ٧$ $\pi/2 + \frac{\pi}{3} ٨$

١٠١

قطاع دائري طول قوسه $٧\pi/٣$ ، قياس زاويته المركزية ١٢0° فإن محيطه =

٢٥ ٥

٣٤ ٦

١٧,٥ ٧

١٧ ٨

١٠٢

أب ، أهـ وتران متساويان في الطول في دائرة طول نصف قطرها $٤\pi/٣$ فإذا كان

٥ (دـا) $= ٨٠^\circ$ فإن مساحة القطعة الدائرية الصغرى التي وترها أب =

٢٤ ٩

٢ ٩

١٢ ٧

٦ ٨

١٠٣

إذا كان طـا $\theta = ٤$ فإن $\frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta} =$

$\frac{١٧}{٥} ٩$

$\frac{٥}{٣} ٩$

$\frac{٢٥}{٦} ٩$

١ ١

١٠٤

٠١٠٧٧٧٥٤٤٨

م. محمد الجمل

النقطة التي تنتمي إلى مجموعة حل المتباينات :

..... $s < 0$, $s > 0$, $2s + c > 4$, $s + 3c < 6$ هي

(١٦١) ٥

٦ (٣,٢)

٧ (٠,٣)

٨ (٣-٤,١)

١٠٥

إذا كانت $A = \begin{pmatrix} 8 & 5 \\ 4 & 6 \end{pmatrix}$ مصفوفة متتماثلة فإن $C =$
.....

٩ ٥

١٠ ٥

١١ ٥

١٢ ٥

١٠٦

إذا كانت $A = \begin{pmatrix} 8 & 7 \\ 18 & 11 \end{pmatrix} = \begin{pmatrix} 7 & s \\ 2 & c \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix}$ فإن $s + c =$

١٣ ٥

١٤ ٥

١٥ ٥

١٦ ٥

١٠٧

المصفوفة A التي تحقق العلاقة $A \times$ تساوى

$\begin{pmatrix} 2 & 4 \\ 3 & 5 \end{pmatrix}$ ٦

$\begin{pmatrix} 5 & 4 \\ 3 & 2 \end{pmatrix}$ ٧

$\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$ ٨

$\begin{pmatrix} 5 & 4- \\ 3- & 2 \end{pmatrix}$ ٩

١٠٨

١٠٩

إذا كان $s = \begin{pmatrix} 16- \\ 2 \\ 11 \end{pmatrix} = \begin{pmatrix} 2- \\ \vdots \\ \vdots \end{pmatrix} + \begin{pmatrix} 3 \\ \vdots \\ 7 \end{pmatrix} + \begin{pmatrix} 2 \\ 1- \\ 5 \end{pmatrix}$

فإن $2s + 3c - 3u =$

١٦ ٦

١٦ ٥

١٧ ٦

١٨ صفر

١٠٩

إذا حكانت A مصفوفة على النظم 2×3 فإن المصفوفة A^{-1} على النظم 3×2

3×2 ③

6×4 ④

2×3 ⑤

4×6 ①

$$\dots = A^{-1} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \text{إذا حكانت } A \text{ فبان } A^{-1}$$

1 ③

□ ④

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \odot \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \text{ ①}$$

عدد حلول المعادلتين 6 س - 5 ص = $23 - 3$ س + 3 ص = 16 هو

③ عدد لا نهائى

2 ④

1 ⑤

٠ ① صفر

$$\dots = \text{صفرهى} \quad \left| \begin{array}{ccc} 3 & 5 & 2s \\ 4 & s & . \\ . & . & (s-3) \end{array} \right| \quad \text{مجموعة حل المعادلة}$$

{٣،٠} ③

{٣-،٠} ④

{٣} ⑤

{٠} ①

مجموعة حل المعادلة $\theta + \theta = 180$ حيث $0 < \theta < 360$ هي

{٠٣١٥} ③

{٠٢٤٠} ④

{٠٢٢٥} ⑤

{٠١٣٥} ①

إذا كان $\theta - طا = 2$ فان $\theta + طا = \theta$

٢ ③

$\frac{1}{4}$ ④

$\frac{1}{2}$ ⑤

١ ①

يستند سلم بأحد طرفيه على حائط رأسى وبطرفه الآخر على أرض أفقية ويبعد طرفه الس资料 عن الحائط 4 أمتار فإذا كان قياس زاوية ميل السلم على الأرض

38° فان طول السلم لأقرب متر = متر

٤ ③

٣ ④

٥ ⑤

٦ ①

إذا كان $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = 0$ حيث [مصفوفة الوحدة فإن $a + b + c + d = 0$]

١ صفر

١٥ ٥

١٦ ٥

٥ ٥

٨ ٥

إذا كان $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 0$ فإن $a =$ صفر

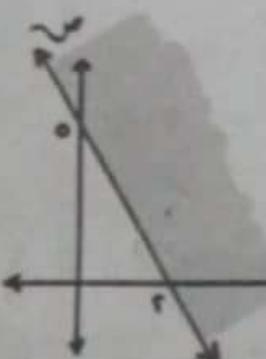
٤ - ١

٤ ± ٥

٥ ٥

١١٨

إذا كان $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = 0$ فإن $ae + bf = 0$


٢ - ١

٤ - ٥

٢ ٥

١١٩

في الشكل المرسوم :
نصف المستوى المظلل يمثل مجموعة حل المباينة

٥ م $5s + 2c < 10$ ٥

٥ م $5s + 2c \leq 10$ ٥

٥ م $5s + 2c \geq 10$ ٥

٥ م $5s + 2c > 10$ ٥

١٢٠

إذا كان $\begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ فإن $a =$

١ ٥

□ ٥

٥ ٥

١ ١

١٢١

إذا كانت $\begin{pmatrix} 0 & 4 \\ 2 & 7 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 4+5 & 7 \end{pmatrix}$ فإن $c =$

٥ صفر

٢ - ٥

٢ ٥

٢ ± ١

١٢٢

في الشكل المقابل :

• احاديث نقلة حـ =

(۲۱-۴۱۳) ①

$$(1-4V) \odot \left(\frac{q}{4}, \frac{V}{4}\right) \odot \left(\frac{21}{4}, \frac{11}{4}\right) \odot$$

اب ه و متوازی اضلاع حیث (۱-۲) و (۱۶۷) و (۱۶۸)

فإن أحاديث نقلة هـ ..

(1-62) ⑤ (162) ⑥ (261-) ⑦ (261) ⑧

۱۰۷ هـ مثلاً فيه (۱۶۳)، (۱۶۴)، (۱۶۵) هـ نقطة تلاقي متوسطاته حيث

..... = م (۲۰۱) فان احادیثیں ہے

(4-40-) 5 (440-) 6 (4-40) 7 (440) 8

..... = || ت || (٥٤٣) = ت ، (٤٤٣) = ت إذا كان

$$3 - \textcircled{A} \quad (3 - 10) \textcircled{B} \quad (310) \textcircled{C}$$

إذا كانت القوى $\sum F_x = 0$ سـ ٩ - صـ ١

$$\frac{1}{3} u + \frac{1}{3} v = \frac{1}{3}, \quad \frac{1}{3} v + \frac{1}{3} (u+1) = \frac{1}{3}$$

..... = (۱ ، ۲)

..... = (ب ، ا)
 (٤٤٤) ⑤ (٤٤٢) ⑥ (٤-٤-٤) ⑦ (٤٤٢) ⑧

سيارة قطعت ٣٠ متر في اتجاه الشمال ثم قطعت نفس المسافة في اتجاه الغرب

فإن إزاحة السيارة هي

٦٠ متر في اتجاه الغرب
٢٣٠ متر في اتجاه الجنوب

إذا كان $\triangle ABC$ متساوياً في مساحته $\frac{1}{2}ab$ ، هنا $b = \frac{3}{2}a$ فما مساحته

مساحة $\triangle ABC = \frac{1}{2} \cdot \frac{3}{2}a \cdot a = \frac{3}{4}a^2$

٦ ①

١٢ ①

١٨ ④

قطعة دائيرية طول نصف قطر دائرتها 10 cm وطول قوسها $26,19\text{ cm}$
فما مساحتها = cm^2

١٣ ①

١٦ ①

١٥ ④

٥١ ④

إذا كان $\overline{AB} = 2\text{ cm}$ ، $\overline{AC} = 3\text{ cm}$ ، $\overline{BC} = 4\text{ cm}$ فما بدلاته \overline{AB} ، \overline{AC} ، \overline{BC} = cm

٢٤ + ٢٣ ④

٢٣ - ٢٤ ①

٢٤ - ٢٣ ④

٢٣ + ٢٤ ④

إذا كان $\overline{AB} + 2\text{ cm} = \frac{\pi}{3} \cdot 2\text{ cm}$ فما \overline{AB} = cm

٣٢ ⑤

٣٢ - ④

٣٢ ④

٣٢ - ①

المعادلة العامة للمستقيم الذي ميله = ٣ ويربع نقطة الأصل هي $\text{ص} - 3\text{ س} = 0$

١ ④ ص + ٣ س = ٠

٢ ④ ص + ٣ س = ٠

٣ ④ ص - ٣ س = ٠

إذا كان $\overline{AB} = 26,2\text{ cm}$ ، $\overline{AC} = 24,4\text{ cm}$ ، $\overline{BC} = 20,2\text{ cm}$ ، فما $\angle A$ = $^\circ$

٣ ⑤

١١ ④

٢ ④

١١ - ①

٥ ⑤ منطبقان

٦ ④ متتقاطعان

المستقيمين $\overline{AB} = \overline{CD} + \overline{EF}$ ٧ = cm

٨ ④ متعمدان

٩ ④ متوازيان

01007775448

العنوان: <https://enmujed.com> | (٢٠٢٤) | (٤٤٣) | (٢٠٢٤) | (١٠٢)

۱- متوازیان های اع

1

10

7

14

إذا كان المتجه \vec{A} يبعد عن قوة مقدارها 5 نيوتن تأثير على جسم وتعمل

٢- اتجاه الشقق

✓ 10-③

21

1 is- (1)

21

۱۲

..... اذا كان اب هو شكل رباعي فيه ٢ بعده = ٣٥ فبان الشكل اب هو

ج

٤

شیء منحرف

مستحصل

10

$$\text{إذا كان } A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}, \text{ و } B = \begin{pmatrix} 4 & 1 \\ 2 & 6 \end{pmatrix} \text{ فما يندرج من } A \text{ و } B \text{ هو } \boxed{A \text{ و } B \text{ متساوية}}.$$

الحد

قطاع دائري قياس زاويته المركزية 90° ومساحة سطح دائريه 160 سم^2

فأوجد مساحة القطاع

الحد

أوجد معادلة المستقيم المار بنقطة تقاطع المستقيمين $S - 2 = 0$ ، $C + 5 = 0$ ويباوزي المستقيم الذي معادلته $\tilde{r} = (2, 3, 4) + k(0, 1, 2)$

اوجان

١٣١

١) $\begin{pmatrix} 3 & 0 \\ 1 & -1 \end{pmatrix}$ ٢) $\begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$ ٣) $\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$ ٤) $\begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$

١) $\begin{pmatrix} 3 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 1 & -1 \end{pmatrix}$ ٢) $\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \dots$

١٤١

١) (١١١) ٢) (٠٠٠) ٣) (-١١٠) ٤) (١١-١)

١) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ ٢) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

١) -١

٢) $\pi/4 \theta$

٣) ١

٤) $\pi/2$

$\begin{vmatrix} 1 & \pi/4 \theta \\ \pi/4 \theta & \pi/2 \end{vmatrix} = \dots$

١) $\pi/2$

٢) -١

٣) ١

٤) ٤

١) $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ ٢) $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \dots$

١) $\{-1, 1\}$

٢) $2 - \{-1, 1\}$

٣) $\{-1\}$

٤) $2 - \{1\}$

١) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ ٢) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \dots$

إذا كان A مدرسة $\begin{pmatrix} 1 & 0 \\ 1 & 2 \\ 6 & 3 \end{pmatrix}$ فإن $A^{-1} =$ = $\begin{pmatrix} 1 & 0 \\ 1 & 2 \\ 6 & 3 \end{pmatrix}$

١ ⑤

٦ ④

٢- ⑦

٤ ①

١٤٨

إذا كان A مدرسة $\begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}$ فإن المصفوفة $B =$ = $\begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}$

$\begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} \oplus \begin{pmatrix} 0 & 3 \\ 2 & 1 \end{pmatrix} \oplus \begin{pmatrix} 0 & 3 \\ 2 & 1 \end{pmatrix} \oplus \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} \oplus$

١٤٩

قيمة k التي تجعل المصفوفة $\begin{pmatrix} 9 & k \\ 4 & 7 \end{pmatrix}$ ليس لها معكوس ضربي تساوى

٦ ⑤

٦± ④

٦ ⑦

٦± ①

١٥٠

إذا كان $A = \begin{vmatrix} 3 & 12 \\ 3 & 24 \end{vmatrix}$ فإن $A^{-1} =$ = $\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$

٣٠ ④

٤٥ ④

١٠ ⑦

١١ ①

١٥١

إذا كان $A = \begin{vmatrix} 5 & 4 \\ 2 & 3 \end{vmatrix}$ فإن $A^{-1} =$ = $\begin{vmatrix} 5 & 4 \\ 2 & 3 \end{vmatrix}$

٩ ④

$\frac{23}{4} ④$

٧ ⑦

٥ ①

١٥٢

إذا كانت المصفوفة A على النظم 2×3 فإن عدد عناصر المصفوفة $A =$ = 2×3 ⑤

٦ ④

٤ ⑦

٥ ①

١٥٣

